Survey of radiative processes of astrophysical importance from radio waves to gamma rays. The interaction of radiation with matter: radiative transfer, emission, and absorption. Thermal and non-thermal processes, including bremsstrahlung, synchrotron radiation, and Compton scattering. Radiation in plasmas. (Formerly Relative Processes.)
Explores how physical conditions in astrophysical objects can be diagnosed from their spectra. Discussion topics include how energy flows determine the thermal state of radiating objects and how the physics of radiative transfer can explain the emergent spectral characteristics of stars, accretion disks, Lyman-alpha clouds, and microwave background. (Formerly Astrophysical Flows.)
Instructor
R. Murray-Clay
Lectures and seminar-style course intended to integrate new graduate students into the department; to introduce students to the research and interests of department faculty; and to expose graduate students to teaching skills and classroom techniques. (Formerly Introduction to Astronomical Research.)
Survey of some principal areas of research on the origin and growth of cosmic structures and galaxies: the dark ages; 21cm tomography; first galaxies; first stars and seed black holes; reionization and chemical enrichment of the intergalactic medium; the assembly of massive galaxies; quasi-stellar sources; interactions of massive black holes with their environment; extragalactic background radiation; numerical simulations and the nature of the dark matter; the dark halo of the Milky Way. (Formerly Special Topics in Cosmology)
Survey of stellar structure and evolution.Physical properties of stellar material. Convective and radiative energy transport. Stellar models and evolutionary tracks through all phases. Brown dwarfs and giant planets. Comparison with observations. (Formerly Stellar Structure and Evolution.)
Theory and observations of protoplanetary disks. Origin and evolution of the solar nebula. Formation and evolution of the terrestrial planets and the giant planets. (Formerly Planetary Formation and Evolution.)
High-energy astrophysics and the final stages of stellar evolution: supernovae, binary stars, accretion disks, pulsars; extragalactic radio sources; active galactic nuclei; black holes. (Formerly Physics of Compact Objects)
Instructor
Enrico Ramirez-Ruiz
Fundamental physical theory of gaseous nebulae and the interstellar medium. Ionization, thermal balance, theory and observation of emission spectra. Interstellar absorption lines, extinction by interstellar dust. Ultraviolet, optical, infrared, and radio spectra of gaseous nebulae.
Survey of modern physical cosmology, including Newtonian cosmology, curved space-times, observational tests of cosmology, the early universe, inflation, nucleosynthesis, dark matter, and the formation of structure in the universe. (Formerly Physical Cosmology.)
Introduces probability and statistics in data analysis with emphasis on astronomical applications. Topics include probability, Bayes' theorem, statistics, error analysis, correlation, hypothesis testing, parameter estimation, surveys, time-series analysis, surface distributions, and image processing. Students learn to identify the appropriate statistical technique to apply to an astronomical problem and develop a portfolio of analytic and computational techniques that they can apply to their own research.
Structure and evolutionary histories of nearby galaxies. Stellar populations, galactic dynamics, dark matter, galactic structure and mass distributions. Peculiar galaxies and starbursting galaxies. Structure and content of the Milky Way. Evolution of density perturbations in the early universe. Hierarchical clustering model for galaxy formation and evolution. (Formerly Galactic and Extragalactic Stellar Systems.)
Covers physical, mathematical, and practical methods of modern astronomical observations at all wavelengths at a level that prepares students to comprehend published data and to plan their own observations. Topics include: noise sources and astrophysical backgrounds; coordinate systems; filter systems; the physical basis of coherent and incoherent photon detectors; astronomical optics and aberrations; design and use of imaging and spectroscopic instruments; antenna theory; aperture synthesis and image reconstruction techniques; and further topics at the discretion of the instructor. Familiarity with UNIX, computer programming, and completion of Physics 116C is strongly recommended as well as at least one upper-division course in astronomy. (Formerly Modern Astronomical Techniques.)
An introduction to astronomical instrumentation for infrared and visible wavelengths. Topics include instrument requirements imposed by dust, atmosphere, and telescope; optical, mechanical, and structural design principles and components; electronic and software instrument control. Imaging cameras and spectrographs are described. Offered in alternate academic years.
Instructor
Constance Rockosi
Introduction to adaptive optics and its astronomical applications. Topics include effects of atmospheric turbulence on astronomical images, basic principles of feedback control, wavefront sensors and correctors, laser guide stars, how to analyze and optimize performance of adaptive optics systems, and techniques for utilizing current and future systems for astronomical observations.
Seminar attended by faculty, graduate students, and upper-division undergraduate students.
Quarter offered
Fall, Winter, Spring
Training for following daily progress in astrophysical research to keep pace with the rapidly evolving scientific field. Students learn how to select and read interesting papers (that span a wide range of topics) efficiently and how to summarize their key results. Students have an opportunity to practice presentation skills in an informal group discussion setting.
Quarter offered
Fall, Winter, Spring
Independent study or research for graduate students who have not yet begun work on their theses. Students submit petition to sponsoring agency. Enrollment restricted to graduate students.
Quarter offered
Fall, Winter, Spring
Independent study or research for graduate students who have not yet begun work on their theses. Students submit petition to sponsoring agency. Enrollment restricted to graduate students.
Quarter offered
Fall, Winter, Spring
Independent study or research for graduate students who have not yet begun work on their theses. Students submit petition to sponsoring agency. Enrollment restricted to graduate students.
Quarter offered
Fall, Winter, Spring
Quarter offered
Fall, Winter, Spring
Quarter offered
Fall, Winter, Spring
Quarter offered
Fall, Winter, Spring