;

Mathematics Education B.A.

Information and Policies

Introduction

The Mathematics Education Bachelor’s of Arts (B.A.) is specially designed for prepare students for a career in K-12 mathematics education. It shares a rigorous approach to advanced mathematics, but requires coursework that is particularly relevant to the K-12 classroom: number theory, classical geometry, and the history of mathematics. In addition, the math education major requires experience in supervised teaching. Many math education majors also participate in CalTeach, to enhance their experience and directly connect with local schools.

In California, students seeking a single-subject credential for secondary teaching in mathematics are required to take the CSET (formerly The National Teachers Examination), a series of examinations that must be passed in order to enter a teaching-credential program. Students who are interested in teaching in high schools can obtain a waiver of the CSET Examinations by completing the mathematics education major, plus three additional specified courses. The Mathematics Department Undergraduate Adviser, the Mathematics Department’s website, and the Education Department advising office have more information about the additional required course. 

Academic Advising for the Program

The undergraduate adviser may be contacted via email at mathadvising@ucsc.edu. The adviser provides information about requirements, prerequisites, policies and procedures, learning support, scholarships, and special opportunities for undergraduate research. In addition, the adviser assists with the drafting of study plans, as well as certifying degrees and minors. Students are urged to stay informed and involved with their major, as well as to seek advice should problems arise.

The Mathematics Department website is a critical resource for students. Here you will find a link to the undergraduate program; the materials at that link constitute the undergraduate handbook. Students should visit this first to seek answers to their questions, because it hosts a wealth of information. Each student in the major is encouraged to regularly review the materials posted to stay current with requirements, course curriculum, and departmental policy. Transfer students should consult the Transfer Information and Policy section. 

Getting Started in the Major

It should be emphasized that the nature of mathematics changes dramatically between lower-division and upper-division courses. Students often find that the material becomes far more abstract and theoretical. In addition, the role of computation in assignments diminishes and a greater weight is placed on deductive reasoning and the integral role of mathematical proofs. The Mathematics Department recommends that students interested in a mathematics major enroll in MATH 100 as early as prerequisites allow in order to decide whether they are interested in upper-division mathematics courses.

Program Learning Outcomes

Mathematics Undergraduate Student Learning Objectives

The mathematics program promotes mathematical skills and knowledge for their intrinsic beauty, effectiveness in developing proficiency in analytical reasoning, and utility in modeling and solving real-world problems. To responsibly live within and participate in the transformation of a rapidly changing, complex, and interdependent society, toward a sustainable and socially just society, students must develop and unceasingly exercise their analytical abilities. Students who have learned to logically question assertions, recognize patterns, and can distinguish the essential from the irrelevant aspects of problems can think deeply and precisely. Students equipped with these skills will be in a position to help solve the “big” problems of our time such as climate change.

Students majoring in mathematics attain proficiency in:

Critical thinking.  The ability to identify, reflect upon, evaluate, integrate, and apply different types of information and knowledge to form independent judgments including analytical and logical thinking and the habit of drawing conclusions based on quantitative information.

Problem solving.  The ability to assess and interpret complex situations, choose among several potentially appropriate mathematical methods of solution, persist in the face of difficulty, and present full and cogent solutions that include appropriate justification for their reasoning.

Effective communication.  The ability to communicate and interact effectively with different audiences, collaborate intellectually and creatively in diverse contexts, and appreciate ambiguity and nuance, while emphasizing the importance of clarity and precision in communication and reasoning.

Students acquire and enhance these abilities in mathematical contexts, but the acquired habits of rigorous thought and creative problem solving are invaluable in all aspects of life. These skills are acquired through experience in the context of studying specific mathematical topics and exploring problems chosen to challenge students’ abilities, spurring them on to acquire new techniques and to abandon familiar but restrictive habits of thought. The overarching objectives can be realized in terms of more focused, appraisable objectives specific to mathematics described on the Mathematics Department website.

Curriculum Matrix

All of the key objectives are addressed to some extent in all courses. For example, the ability to formulate precise mathematical statements and to reason logically are essential skills that are progressively developed throughout the curriculum. However, some skills are more heavily emphasized and utilized in some courses than in others. Some courses are specifically intended to help students move to a new level of proficiency with a particular portfolio of skills, while others are accessible only to students who have already reached a given level; the latter courses make heavy use of particular skills, and thus enhance and reinforce the student’s mastery of them, but the skills themselves are not the primary focus of such courses. Some connections between the key objectives, main subject-specific areas, and courses are indicated in the tables of lower- and upper-division mathematics courses at the Mathematics Department’s website.

Major Qualification Policy and Declaration Process

Major Qualification

Admission to the mathematics education major is contingent on students successfully passing the following introductory courses or their equivalents:

Choose one of the following courses:
MATH 19ACalculus for Science, Engineering, and Mathematics

5

MATH 20AHonors Calculus

5

Plus one of the following courses:
MATH 19BCalculus for Science, Engineering, and Mathematics

5

MATH 20BHonors Calculus

5

Plus all of the following courses:
MATH 21Linear Algebra

5

MATH 23AVector Calculus

5

MATH 23BVector Calculus

5

MATH 100Introduction to Proof and Problem Solving

5

It is strongly recommended that only students who earn grades of B- or better in MATH 100 consider applying to the major in mathematics. 

Students may only declare once they have passed all introductory courses or their equivalent courses with a grade of C or better. Students who receive two grades of NP, C-, D+, D, D-, or F in the introductory courses are not eligible to declare in the major.

Appeal Process

Students who are not eligible to declare may submit an appeal to the department's undergraduate vice chair. See the department webpage for details on submitting an appeal. Students are strongly encouraged to file an appeal as soon as a student is no longer qualified to declare. The mathematics adviser will subsequently notify the student, and their college, of the decision, no later than 15 business days after the submission of the appeal. An appeal decision may be in the form of an approval, denial or conditional approval. For students who have not completed all of the major qualification courses, conditional approvals are based on subsequent performance in the remainder of the qualification courses.

How to Declare a Major

See the Mathematics Department website for directions on How To Declare the Major.

Transfer Information and Policy

Transfer Admission Screening Policy

The following courses or their equivalents are required prior to transfer, by the end of the spring term for students planning to enter in the fall.

MATH 19ACalculus for Science, Engineering, and Mathematics

5

MATH 19BCalculus for Science, Engineering, and Mathematics

5

MATH 21Linear Algebra

5

MATH 23AVector Calculus

5

Students planning to transfer to UC Santa Cruz from a California community college should reference the assist website to determine which courses are equivalent to these required courses.

Recommended Course for Transfer Students

In addition, the following course is recommended prior to transfer to ensure timely graduation.

STAT 5Statistics

5

Prospective students are encouraged to prioritize recommended major preparation, and may additionally complete courses that articulate to UC Santa Cruz general education requirements as time allows.

Getting Started at UCSC as a Transfer Student

While enrolled in or after finishing the final required qualification courses, a student should follow the directions to apply to declare the major on the Mathematics Department Major Declaration webpage.

To obtain equivalency for MATH 23A, transfer students will have taken a course that may also be equivalent to MATH 23B. Students are encouraged to contact the undergraduate adviser to determine if this applies to their situation.

Letter Grade Policy

There are no restrictions on grading options for Mathematics Department courses.  Please see the UCSC-wide policies on grading options.

Course Substitution Policy

The Mathematics Department’s undergraduate vice chair approves requests for course substitutions. See the department website for details on requesting an exception to policy or course substitution. 

Honors

Honors in the Mathematics Department are awarded to graduating students whose academic performance in the major demonstrates excellence at a GPA of 3.5 or above. Highest Honors are determined by a cumulative review of student performance in mathematics courses. They are awarded to students who excel in challenging courses and in their capstone projects.

Requirements and Planners

The Mathematics Education B.A. is intended to introduce students to the mathematics necessary for a career teaching kindergarten through high school (K-12) mathematics.

Course Requirements

Lower-Division Courses

One of the following courses:
MATH 19ACalculus for Science, Engineering, and Mathematics

5

MATH 20AHonors Calculus

5

Plus one of the following courses:
MATH 19BCalculus for Science, Engineering, and Mathematics

5

MATH 20BHonors Calculus

5

Plus all of the following courses:
MATH 21Linear Algebra

5

MATH 23AVector Calculus

5

MATH 23BVector Calculus

5

STAT 5Statistics

5

Upper-Division Courses

All of the following courses:
MATH 100Introduction to Proof and Problem Solving

5

MATH 110Introduction to Number Theory

5

MATH 128AClassical Geometry: Euclidean and Non-Euclidean

5

MATH 181History of Mathematics

5

STAT 131Introduction to Probability Theory

5

Plus one of the following courses:
MATH 103AComplex Analysis

5

MATH 105AReal Analysis

5

Plus one of the following courses:
MATH 111AAlgebra

5

MATH 111TAlgebra

5

Plus all the following courses:
EDUC 50BCAL Teach 1: Mathematics

2

EDUC 100BCal Teach 2: Mathematics

2

Plus one of the following courses:
MATH 194Senior Seminar

5

MATH 195Senior Thesis

5

UC Santa Cruz students can pursue a degree in mathematics while preparing to teach at the secondary level. In California, students seeking a single-subject credential (for secondary teaching) in mathematics are required to take the CSET, a series of examinations that must be passed in order to enter a teaching-credential program (formerly The National Teachers Examination). Students who complete the mathematics education major, plus three additional specified courses, qualify for the California Single Subject Program, exempting themselves from the CSET. Both the Mathematics Department undergraduate adviser, the Mathematics Department’s website and the Education Department advising office have more information about the additional required courses for the Subject Matter Program.

Comprehensive Requirement

The comprehensive exit requirement in mathematics is satisfied by one of the following courses:

MATH 194Senior Seminar

5

MATH 195Senior Thesis

5

Disciplinary Communication (DC) Requirement

Students of every major must satisfy that major’s upper-division Disciplinary Communication (DC) requirement. The DC requirement in the Mathematics Education B.A. is satisfied by:

MATH 100Introduction to Proof and Problem Solving

5

Plus one of the following courses:
MATH 194Senior Seminar

5

MATH 195Senior Thesis

5

Planners

Mathematics Education B.A.: Sample Freshmen Academic Plan

  Fall Winter Spring
1st
(frosh)
MATH 19A
or MATH 20A
MATH 19B
or MATH 20B
STAT 5
    MATH 23A
     
2nd
(soph)
MATH 21 MATH 100 MATH 128A
MATH 23B
     
3rd (jr) MATH 110 MATH 181 MATH 111T
EDUC 50B EDUC 100B
     
4th (sr) STAT 131 MATH 103A
or MATH 105A
MATH 194
     
     

The MF, PR, SR and TA general education requirements are satisfied through this sample plan.

Mathematics Education B.A.: Sample Transfer Academic Plan

For students who have completed MATH 19A, MATH 19B, MATH 21 and MATH 23A equivalents.

Fall Winter Spring
1st (jr) MATH 23B MATH 103A
or MATH 105A
MATH 128A
MATH 100 MATH 181 STAT 5
     
2nd (sr) MATH 110 STAT 131 MATH 194
EDUC 50B EDUC 100B MATH 111T