Introduces the tools and applications of biotechnology in the fields of medicine, agriculture, the environment, and industry.
Instructor
The Staff, Nader Pourmand
General Education Code
PE-T
Quarter offered
Fall, Winter
The principles of life as it exists on this planet and how they generalize. Darwinian evolution, genomes, scientific theories of life (mechanistic, thermodynamic, information theoretic). Future of life: Internet, machine learning and adaptation, artificial intelligence, genome editing, fully artificial life.
Instructor
David Haussler, David Deamer
General Education Code
SI
Introduces students to basic laboratory techniques that are essential to begin work in faculty research labs and on capstone projects. Students have several independent blocks/fixed projects and learn how to use various instruments and techniques employed in biotechnology laboratories, such as: calibration and use of the pipette; making up various buffers; pH titration; Bactrial transformation; TAcloning; plasmid and DNA isolation; Polymerase Chain Reaction (PCR); gel electrophoresis; Pyrosequencing; and an introduction to Linux for DNA sequence analysis.
Instructor
Nader Pourmand, Dianne Hendricks
Quarter offered
Fall, Winter
The first in a two-part series that includes
BME 23L. Together these courses prepare bioengineering students for successful junior/senior year projects in faculty research laboratories, iGEM, or Senior Design. The focus is on molecular biology laboratory and introductory bioinformatics skills. Students will design and initiate an original metagenome study near the end of the term.
Instructor
Mark Akeson, Ali Shariati, Richard Edward Green, Dianne Hendricks
Quarter offered
Winter, Spring
Continuation of
BME 22L. Together these courses prepare bioengineering students for successful junior/senior year projects in faculty research laboratories, iGEM, or Senior Design. The focus is on molecular biology laboratory and introductory bioinformatics skills. Students will complete original metagenome and transcriptome studies.
Instructor
Mark Akeson, Christopher Vollmers
Lab-based course that introduces measuring, modeling, and designing electronics circuits, emphasizing voltage dividers and complex impedance culminating in simple, negative-feedback op amp circuits for amplifying audio signals.
Lab-based course that introduces designing, measuring, and modeling electronics circuits, emphasizing RC filters and negative-feedback amplifiers for various sensors circuits for amplifying audio signals, design of multi-stage amplifiers, instrumentation amplifiers, and class-D power amplifiers.
Course intended to assist second-year biomolecular engineering and bioinformatics undergraduates find research labs that they might join. Students sit in on different lab group meetings, read papers recommended by the lab groups, and report back to other students in the class both verbally and in writing. Course is offered for pass/no pass only.
Serves science and non-science majors interested in bioethics. Guest speakers and instructors lead discussions of major ethical questions having arisen from research in genetics, medicine, and industries supported by this knowledge.
Cross Listed Courses
PHIL 80G
Instructor
The Staff, Karen Miga
General Education Code
PE-T
Course will focus on understanding human genes. Accessible to non-science majors. Will cover principles of human inheritance and techniques used in gene analysis. The evolutionary, social, ethical, and legal issues associated with knowledge of the human genome will be discussed.
Instructor
The Staff, Karen Miga, Christopher Vollmers, Richard Edward Green
General Education Code
PE-T
Quarter offered
Fall, Winter
Provides a means for a small group of students to study a particular topic in consultation with a faculty sponsor. Students submit petition to sponsoring agency.
Quarter offered
Fall, Winter, Spring
Provides a means for a small group of students to study a particular topic in consultation with a faculty sponsor. Students submit petition to sponsoring agency.
Quarter offered
Fall, Winter, Spring
Students submit petition to sponsoring agency.
Quarter offered
Fall, Winter, Spring
Students submit petition to sponsoring agency.
Quarter offered
Fall, Winter, Spring
Cross-listed Courses
Investigates the scientific, ethical, social, and legal dimensions of human embryonic stem-cell research, including the moral status of the embryo; the concept of respect for life; ethical constraints on oocyte procurement; creation of embryonic chimeras; federal policies; and political realities. (Also offered as Biomolecular Engineering 247. Students cannot receive credit for both courses.) Prerequisite(s): Course in stem cell biology (ex:
BME 278 Stem Cell Research) or the equivalent knowledge. Enrollment is restricted to graduate students.
Cross Listed Courses
BME 247
Considers the practical and epistemological necessity of collaborative research in the development of new sciences and technologies that are attentive to questions of ethics and justice. Enrollment is by permission of instructor. Enrollment is restricted to graduate students.
Cross Listed Courses
BME 268A, FMST 268A, ANTH 267A
Provides in-depth instruction in conducting collaborative interdisciplinary research. Students produce a final research project that explores how this training might generate research that is more responsive to the links between questions of knowledge and questions of justice. Prerequisite(s):
SOCY 268A, BME 268A, FMST 268A, or ANTH 267A. Enrollment is restricted to graduate students and by permission of the instructor.
Cross Listed Courses
FMST 268B, BME 268B, ANTH 267B